Overview
- Context for recycled water in plant production systems
- Plant responses to saline irrigation
- Research insights
- Implications for management
- Questions from the audience

Salt Management in Recycled Water Affects Perennial Ornamental Species

Lloyd Nackley, PhD.
Assistant Professor, Plant Production Systems
Oregon State University, North Willamette Research and Extension Center

The Need for Alternative Water Supplies

Decreased available water: intensive use of nearly all good quality supplies means that new irrigation projects and old projects seeking new or supplemental supplies must rely on lower quality and less desirable sources. (FAO.org)
What Is Recycled Water?

Wastewater that has been treated to meet specific water quality criteria with the intent of being used for a range of purposes. The term recycled water is synonymous with reclaimed water.

Benefits:
Supplies are highly reliable and typically increase with population growth.
Energy efficiency and sustainability are key drivers of water reuse, water infrastructure requires large amounts of energy.
Municipal reclaimed water might be the higher quality that groundwater on farm.

Recycled Water Sources

Municipal:
- **Secondary Treatment**: Biological Oxidation, Disinfection is a process where dissolved and suspended biological material is removed to a nonpotable level can be for irrigation.
- **Tertiary Treatment**: Processes that purify water can remove nitrogen and phosphorus.

Recycle Water Vegetable grower, Castroville, CA

Recycled Water Sources

Personal:
- Farm catchment
 - Catchment/retention ponds should be designed with capacity to retain about 90% of the maximum daily irrigation water applied
 - Catchment/retention ponds should be designed with capacity to retain the first 1/2 inch of rainwater runoff.

Municipal Example: Irvine Ranch Water District

The district began delivering recycled water to its agricultural customers in 1967.

It takes about 16 to 18 hours to produce recycled water – from the time the sewage enters the plant until the finished product is disinfected and ready for distribution.

The IRWD service area through our extensive recycled water distribution system.
Deliver more than 25 million gallons of recycled water per day to more than 4,000 customers.

Data from WaterReuse.Org

Ponds, California, Texas, Arizona, Colorado, Texas, Utah, South Atlantic

Recycled wastewater flows to the US by state 2010

Source: www.irwd.com

Recycled Water Sources

Personal: Farm catchment
- Catchment/retention ponds should be designed with capacity to retain about 90% of the maximum daily irrigation water applied
- Catchment/retention ponds should be designed with capacity to retain the first 1/2 inch of rainwater runoff.

Catchment/Big Catchment

Composted Catchment
Quality: Physical and Biological

PHYSICAL FILTRATION BIOLOGICAL STERILIZATION PAIRED W/ SAND

Quality: Chemical

“...Of particular importance are the salts and nutrients in [Recycled water] and special management practices for both end uses may be required depending on the concentrations in the [Recycled] water. For example, in some areas where landscaping is irrigated, the soil sensitivity of the irrigated plants should be considered.”

Section 3.1.1. EPA 2012 Guidelines

Salts

Salts: any chemical compound formed from the reaction of an acid with a base, with all or part of the hydrogen of the acid replaced by a metal or other cation

Total Conc: Measured in Electrical Conductivity (dS m⁻²) or Total Dissolved solid (TDS) (ppm).

The suitability of a water for irrigation is determined not only by the total amount of salt present but also by the kind of salt.

Sources of Salinity

Groundwater - dissolution or weathering of the rocks and soil, including lime, gypsum and other slowly dissolved soil minerals.

Recycled Water: salts depend on supply sources, the influent waste streams (i.e., domestic and industrial contributions), salts from the excess fertilizers, sterilizers, and the treatment processes.
Salinity-Related Problems

Osmotic balance —
- Yield reductions occur when the crop is no longer able to extract sufficient water from the salty soil solution.
- Each subsequent irrigation pushes the salts deeper into the root zone where they continue to accumulate until leached.

Ion Toxicity —
- The ions of primary concern are chloride, sodium and boron.
- The degree of damage depends on the uptake and the crop sensitivity. Damage often occurs at relatively low ion concentrations for sensitive crops.
- The more tolerant annual crops are not sensitive at low concentrations but almost all crops will be damaged or killed if concentrations are sufficiently high.

Nearby Concerns: Pajaro Valley

Groundwater is the main source of water for residents and farmers in the Pajaro Valley, making groundwater quality very important to monitor.

The Alkuval aquifer is most affected by agricultural run off and pollutants.

Overdraft has caused seawater intrusion for all three aquifers and its effects are most pronounced in the Aromas aquifer (the middle ground water aquifer).

The Purisma aquifer (the lowest) contains really old, mineral rich water that is not ideal for irrigation.

Salt Accumulation Over Time

A problem where salts are present in the groundwater, and/or areas with high evaporation, and low natural rainfall.

- Field grown crops in irrigated horticulture (Central, San Joaquin, Imperial Valleys).
- Field grown crops where salt intrusion present in groundwater (Coastal)
- Container Nurseries Perennials with high evaporative demand (Inland Empire, Santa Clara Valley, etc)
- Golf Courses

How sensitive are plants to the salt?

“Of particular importance are the salts and nutrients in [recycled] water, and special management practices for both end uses may be required depending on the concentrations in the [recycled] water. For example, in some areas where landscaping is irrigated, the salt sensitivity of the irrigated plants should be considered.”

Section 3.1.1. EPA 2012 Guidelines
Two Experiments: Investigate Thresholds

CONCENTRATION AND ION TOXICITY
LONG LIVED CONIFERS

CONCENTRATION HERBACEOUS PERENNIALS

CONCENTRATION and Ion Toxicity Long Lived Conifers

C. Barnes M.S. Research Oki Lab
Santa Clara Valley Water District goal 10% recycled water. Concern about charismatic
Redwood trees in urban landscapes.

1.5 yrs
Two Sequoia sempervirens 'Aptos Blue' saplings
2 gal pots
Four salts:
• sodium chloride (NaCl)
• calcium chloride (CaCl₂)
• sodium chloride + calcium chloride (NaCl + CaCl₂)
• sodium sulfate (NaSO₄)
Each salt type was applied at four different
concentrations: 1.0, 3.0, 4.5, and 6.0 dS m⁻¹.

Nackley, Barnes, Oki, 2015
https://doi.org/10.1093/aobpla/plv035

All Ions Toxic, at Low Rates >1.0 dS m⁻¹.

Horticultural Implications

Concentration and Ion Toxicity Long Lived Conifers

1) If your market, or production facility, is
outside narrow range then you need to be very
aware of salinity
2) Irrigation with recycled water should be
restricted to under the canopy of the and that soil
salinity accumulation should not exceed 2 dS m⁻¹

Natural Range Coast Redwood

Top kill and death in mismanaged, irrigated, mature Coast Redwoods

Wu & Guo. 2006
Environmental and Experimental Botany
https://doi.org/10.1016/j.envexpbot.2005.07.003

Others have reported foliar damage from low levels
of Boron ions.

Mc-Murray 2000: Environmental and Experimental Botany
https://doi.org/10.1016/S0014-4827(00)00035-1
Herbaceous Perennials: Perception and Reality

<table>
<thead>
<tr>
<th>Species Cultivar</th>
<th>6 months May-Nov</th>
<th>Two irrigation sources</th>
<th>11 cultivars (n=10)</th>
<th>Measured for Growth</th>
<th>Aesthetics rated in a blind survey of 30 MGs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemerocallis Primal Scream</td>
<td>Half Received Potable irrigation water</td>
<td>Half Received Municipal Irrigation water. Source: IRWD</td>
<td>11 cultivars (n=10)</td>
<td>Measured for Growth</td>
<td>Aesthetics rated in a blind survey of 30 MGs</td>
</tr>
<tr>
<td>Heuchera Dolce Blackcurrent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosa SunBelt Desmond Tutu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calamagrostis Karl Foester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deschampsia Northern Lights</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibrachoa Superbells Red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuchsia Shadow Dancer Better</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guara Perky Pink</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavandula Sweet Romance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salvia Black and Blue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On Average, plants grew about 15-25% larger on recycled water (EC <1.0 dS m\(^{-2}\)). Indistinguishable aesthetic appeal. Both groups looked pretty much the same to the MGs.

Management Implications

- **Monitor**
 - Complete water quality tests at least twice a year, Spring/Summer
 - In-line sensor or Leachate Extraction biweekly-monthly during growing season

- **Mitigate**: Leaching is the key
 - Two water sources are ideal: blend fresh water to reduce salinity, or pulse low-salt water
 - Irrigate more frequently to maintain high plant-available water since greater soil tension
 - Irrigate longer duration to prevent accumulation increase leaching fraction >40%
 - Increase drainage. Soilless media and pot shape

- **Market**
 - Grow salt tolerant plants. Wide range of selections: from Coastal areas
 - Breeding programs for salt tolerance
 - Beauty from Waste: Grown with water conservation practices.