CLEAN WATER WITH PLANTS & WOOD CHIPS

Sarah A. White, Ph.D.

Water challenges & concerns

Contaminants?
Availability?
Salts
Aquatic weeds
Pesticides
Pathogens

Irrigation timing?
Cultural practices?
Plant diseases?

How much have I lost?
$ and opportunity cost
Treatment technologies for runoff

- Filter strips
- Floating wetlands
- Wood chip bioreactors

Treatment technologies: Plants

- Slows water
- Absorbs
 - nutrients
 - trace metals
 - other compounds
- Microbes
 - Habitat (surface area)
 - carbon source
Filter strips

Bands of vegetation used between production areas & retention ponds

- Slow runoff
- Trap:
 - Sediment
 - Fertilizer
 - Pesticides
 - (potentially) pathogens

Before they enter surface water

Floating Treatment Wetlands

+ N

+ P
Floating treatment wetlands (FTWs)

Algae & duckweed control

Alkalinity, pH & nutrient management
Alkalinity & Acidity

Greenhouse irrigation water ranges across US and Canada
pH: 3.3 to 10.4
alkalinity: 2 to 575 mg·L⁻¹ CaCO₃

Assume runoff from irrigation maintains similar water quality measures

Do ranges in alkalinity & pH of runoff affect bioremediation efficacy?

Acidity (pH)

Iris ensata

Panicum hemitomon

Alkalinity (CaCO₃ mg/L)

Iris ensata

Panicum hemitomon

Plant selections for FTWs
Plant Selection

- Canna 'Firebird'
- Iris ensata
- Panicum virgatum
- Carex stricta
- Agrostis alba

Nutrient loading & FTW efficacy

Swiss Chard

2013 Nitrogen (mg/m²/d)

- Average N (mg/m²/d)
- Influent HIGH
- Influent MOD
- Effluent HIGH
- Effluent MOD
Swiss Chard

Phosphorus mg/m²/d

Average P (mg/m²/d)

Swiss Chard
High: 156 ± 7.37
Mod: 75.4 ± 4.06

Swiss Chard
High 156 ± 7.37
Mod 75.4 ± 4.06

Maintenance of FTWs: weeds & harvest

Agrostis Canna Carex/Sedge Juncus Marigold

Inflow Outflow

P fixed (g/m²/harvest)

N uptake in 5 species

Inflow Outflow
Harvest timing

End-uses of harvested material

Average Evaluative Rating of each Species over 8 weeks
Treatment Technology: Wood chip bioreactors (Carbon wall)

- Subsurface trenches - filled with wood chips (¼ to 1")
- Water flows through trench
- Wood chips - substrate for bacteria that reduce nitrate to N gas via denitrification
Why bioreactors?

- Require no modification of current practices
- No land removed from production
- No decrease in drainage effectiveness
- Require little to no maintenance
- Last for up to 20 years
- Cost effective

Nitrate-N removal & wood-chip bioreactors

Pesticides & wood-chip bioreactors

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Bioreactor inlet (ppb)</th>
<th>Bioreactor outlet (ppb)</th>
<th>Report limit (ppb)</th>
<th>Chronic invertebrate benchmark (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dinitroaniline: Oxyfluorfen</td>
<td>0.071</td>
<td>ND</td>
<td>0.05</td>
<td>13</td>
</tr>
<tr>
<td>Pyrethroids:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bifenthrin</td>
<td>0.0133</td>
<td>0.00434</td>
<td>0.001</td>
<td>0.0013</td>
</tr>
<tr>
<td>Permethrin-cis</td>
<td>0.00336</td>
<td>ND</td>
<td>0.002</td>
<td>0.0014</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>ND</td>
<td>ND</td>
<td>0.05</td>
<td>1.05</td>
</tr>
</tbody>
</table>

Sea Mist Farms Bioreactor

Acknowledgements

- Matthew Cousins
- Liz Nyberg
- Brandon Seda
- Brad Glenn
- Garrett Ridge
- Niles Brinton
- David Tyrpak
- Natasha Bell
- Ashley Willis
- Sarah Van Brunt
- Julie Brindley
- Leah Gregory
- Chris Lasser

This material is based upon work that is supported by the National Institute of Food & Agriculture, U.S. Department of Agriculture, under award number 2014-51181-22372