

| <br> | <br> | <br> | <br> |  |
|------|------|------|------|--|
|      |      |      |      |  |
|      |      |      |      |  |
|      |      |      |      |  |
| <br> | <br> | <br> | <br> |  |
|      |      |      |      |  |
|      |      |      |      |  |
|      |      |      |      |  |
|      |      |      |      |  |
|      |      |      |      |  |
|      |      |      |      |  |



| <br> | <br> |  |
|------|------|--|
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |





| <br> | <br> | <br> |
|------|------|------|
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |





| <br> | <br> |  |
|------|------|--|
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

# **TÓPICOS**

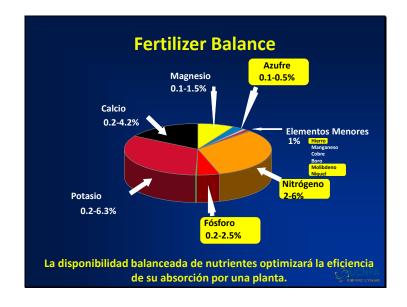
- I. Tipos de Fertilizantes
- II. Monitoreo del Estado de Fertilidad de los Cultivos



## **Tópicos**

- I. Tipos de Fertilizantes
  - A. Fuentes y Formulaciones
  - **B.** Fertilizantes Solubles
  - C. Fertilizantes Granulares
  - D. Fertilizantes Orgánicos




# **Tópicos**

- II. Monitoreo del Estado de Fertilidad de los Cultivos
  - A. Agua de Riego
  - B. Sustrato o Medio
  - C. Tejidos

3UONE

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |





| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

# Fuente de Fertilizantes para un elemento

- Solubilidad Quelatos de Fe vs. Sulfatos u Óxidos de Fe
- Estabilidad de pH Nitratos, Carbonatos de Ca aumentan el pH; Amonio lo disminuye
- Interacciones de Nutrientes Mezcla y Almacenamiento
  - Fertilizantes de Fosfato y Sulfato pueden precipitar con fertilizantes de Calcio
  - Use y almacene solucioneos de quelatos in agua con el rango de pH apropiado.
  - Use y almacene soluciones de quelatos en agua con el rango de pH adecuado y en la oscuridad.

#### **Quelatos y sus Propiedades Químicas**

Quelatos, Fórmula Química, Peso Molecular (P.M.), Constantes de Formación, y el Rango del pH al cual el quelato usualmente forma un complejo estable con el Hierro (Fe) (Bachman, 1993; Norvell, 1971).

|                    |                                                                |      | Constantes de Formación |       |      |      | Rango de pH para Estabilidad<br>de Quelatos-Fe |                    |  |
|--------------------|----------------------------------------------------------------|------|-------------------------|-------|------|------|------------------------------------------------|--------------------|--|
| Quelatos           | Fórmula                                                        | P.M. | Fe                      | Cu    | Zn   | Mn   | Límite Inferior                                | Límite<br>Superior |  |
| CDTA <sup>1</sup>  | C <sub>14</sub> H <sub>22</sub> O <sub>8</sub> N <sub>2</sub>  | 346  | 29.4                    | 22.2  | 19.6 | 17.7 | 4.0                                            | 7.0-7.5            |  |
| DTPA <sup>2</sup>  | C <sub>14</sub> H <sub>23</sub> O <sub>10</sub> N <sub>3</sub> | 393  | 29.2                    | 22.6  | 19.7 | 16.7 | 4.0                                            | 7.0-7.5            |  |
| EDDHA <sup>3</sup> | C <sub>18</sub> H <sub>20</sub> O <sub>6</sub> N <sub>2</sub>  | 360  | 35.3                    | >24.9 | 17.8 | -    | 4.0                                            | 9.0                |  |
| EDTA <sup>4</sup>  | C <sub>10</sub> H <sub>16</sub> O <sub>8</sub> N <sub>2</sub>  | 292  | 26.5                    | 19.7  | 17.2 | 14.5 | 4.0                                            | 6.3                |  |
| EGTA <sup>5</sup>  | C <sub>14</sub> H <sub>24</sub> O <sub>10</sub> N <sub>2</sub> | 380  | 21.9                    | 18.6  | 13.8 | 13.2 | 4.0                                            | 5.2                |  |
| HEDTA <sup>6</sup> | C <sub>10</sub> H <sub>18</sub> O <sub>7</sub> N <sub>2</sub>  | 278  | 20.8                    | 18.2  | 15.2 | 11.5 | 4.8                                            | 6.7                |  |

- <sup>1</sup>Ácido Cyclohexanediaminotetraacético <sup>2</sup>Ácido Dictillenetriaminopentaacético <sup>3</sup>Ácido Etilicodiaminadio-bidroxifemilacético <sup>4</sup>Ácido Etilenediaminotetraacético <sup>5</sup>Ácido Etilenediaminotetraacético <sup>6</sup>Ácido Etilenediaminotetracético <sup>6</sup>Ácido Hidroxictiletilenodiaminotriacético



| <br> | <br> | <br> |
|------|------|------|
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |

| Contenido de Fertilizantes ¿Cuánto nitrógeno hay en una bolsa de X-X-X? Factor de conversión del Nitrógeno (N): 1 |                                                                                                                                                                                         |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Ejemplo 1: 100 lb de 20-20-20                                                                                     | (20%-20%-20%)                                                                                                                                                                           |  |  |  |  |  |
| 100 lb x 0.2 = 20 lb                                                                                              | GUARANTEED ANALYSIS   F1074                                                                                                                                                             |  |  |  |  |  |
| Ejemplo 2: 100 lb de 15-20-20                                                                                     |                                                                                                                                                                                         |  |  |  |  |  |
| 100 lb x 0.15 = 15 lb                                                                                             | Copper (Cu) 0.05% 0.05% Chelated Copper (Cu) 0.05% 0.10% Chelated Iron 0.05% 0.05% Chelated Iron 0.05% Manganese (Mn) 0.05% Molybdenum (Mo) 0.05% Zinc (Zn) 0.05%                       |  |  |  |  |  |
| Ejemplo 3: 50 lb de 20-10-20                                                                                      | 0.05% Chelated Zinc (Zn) Derived fine: Boric Acid, Copper EDTA, Iron EDTA, Manganese EDTA, Magnesium Sulfate, Potassium Mitrate, Potassium Phosphate, Sodium Molybdate, Urea, Zinc EDTA |  |  |  |  |  |
| 50 lb x 0.20 = 10 lb                                                                                              | NAME DE L'ANGERE                                                                                                                                                                        |  |  |  |  |  |

| <br> | <br> | <br> |
|------|------|------|
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |



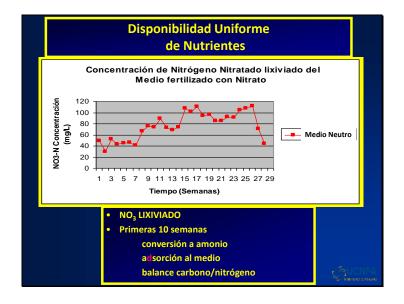
| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

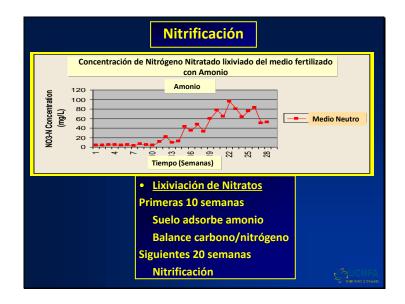
| Contenido de Fertilizantes<br>¿Cuánto fósforo hay en una bolsa de X-X-X?<br>Factor de Conversión de Fosfato (P <sub>2</sub> O <sub>5</sub> ) a Fósforo (P): 0.43 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|
| <u>Ejemplo 1;</u> 100 lb de 20-20-20 (2                                                                                                                          | Ejemplo 1; 100 lb de 20-20-20 (20%-20%-20%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |  |  |  |  |  |
| 100 lb. x 0.20 x 0.43 = 8.6 lbs                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |  |  |  |  |
| <u>Ejemplo 2;</u> 100 lb de 20-15-20                                                                                                                             | GUARANTEED ANATYSIS   F1074   Total Nitrogen (N). 20%   1.57% Nitrate Nitrogen   1.57% Nitrate Nitrogen   1.57% Nitrate Nitrogen   20%   1.57% Nitrate Nitrogen   2.0%   1.57% Nitrate Nitrogen   1.57% Nitrate Nitrate Nitrogen   1.57% Nitrate   |                      |  |  |  |  |  |
| 100 lb. x 0.15 x 0.43 = 6.45 lbs                                                                                                                                 | 0.05% Chelated Copper (Cu) (10) Chelated Iron (Fe) (10) Chelated Iron (10) Chelated Iron (10) Chelated Iron (10) Chelated Manga (10) Chelated Manga (10) Chelated Manga (10) Chelated Iron (10) Chelated (10 |                      |  |  |  |  |  |
| Ejemplo 3; 50 lb of 20-20-10                                                                                                                                     | Derived from: Boric Acid, Copper EDTA,<br>fron EDTA, Manganese EDTA, Magnesium<br>Sulfate, Fotassium Nitrate, Potassium<br>Phosphate, Sodium Molybdate, Urea,<br>Zinc EDTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |  |  |  |  |  |
| 50 lb. x 0.20 x 0.43 = 4.30 lbs                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E THE REAL PROPERTY. |  |  |  |  |  |

| <br> | <br> | <br> |  |
|------|------|------|--|
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |



|  | <br> |  |
|--|------|--|
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |


| Contenido de Fertilizantes<br>¿Cuánto Potasio hay en una bolsa de X-X-X?<br>Factor de Conversión de Potasa (K <sub>2</sub> O) a Potasio (K): 0.83 |                                                                                                                                                                               |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <u>Ejemplo 1;</u> 100 lb de 20-20-20 (                                                                                                            | 20%-20%-20%)                                                                                                                                                                  |  |  |  |  |  |
| 100 lb. x 0.20 x 0.83 = 16.6 lbs                                                                                                                  |                                                                                                                                                                               |  |  |  |  |  |
| <u>Ejemplo 2;</u> 100 lb de 20-20-15                                                                                                              | GUARANTEED AMAIYSIS   1074                                                                                                                                                    |  |  |  |  |  |
| 100 lb. x 0.15 x 0.83 = 12.45 lbs                                                                                                                 | Copper (cu)                                                                                                                                                                   |  |  |  |  |  |
| <u>Ejemplo 3;</u> 50 lb de 20-20-10                                                                                                               | 0,05% Chelated Zinc (Zn) Derived from: Borlo Acid, Copper EDTA, Iron EDTA, Manganese EDTA, Magnesium Sulfate, Fotassium Nitrate, Fotassium Phosphate, Sodium Molybdate, Urea, |  |  |  |  |  |
| 50 lb. x 0.10 x 0.83 = 4.15 lbs                                                                                                                   | Zinc EDTA  Sprane Anticord                                                                                                                                                    |  |  |  |  |  |


| <br> | <br> | <br> | <br> | <br> | <br> |
|------|------|------|------|------|------|
|      |      |      |      |      |      |
|      |      |      |      |      |      |
|      |      |      |      |      |      |
|      |      |      |      |      |      |
|      |      |      |      |      |      |
|      |      |      |      |      |      |
|      |      |      |      |      |      |
|      |      |      |      |      |      |
|      |      |      |      |      |      |
|      |      |      |      |      |      |

| i.                    | Tipo<br>A.<br>B.<br>C.            | os de Fertilizantes Fuentes y Formulaciones Fertilizantes Solubles Fertilizantes Granulares |
|-----------------------|-----------------------------------|---------------------------------------------------------------------------------------------|
|                       | D.                                | Fertilizantes Orgánicos                                                                     |
|                       |                                   |                                                                                             |
| 18<br>Availa<br>Solut | Nitro<br>1.979<br>8.039<br>able l | FEED ANALYSIS F1074  Gen (N)                                                                |



| <br> | <br> | <br> |
|------|------|------|
|      |      |      |
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      | <br> |      |
|      |      |      |
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |
|      |      |      |





| <br> |  |   |
|------|--|---|
|      |  |   |
|      |  |   |
|      |  |   |
|      |  |   |
|      |  |   |
|      |  |   |
|      |  |   |
|      |  |   |
|      |  | _ |
|      |  |   |

#### Fertilizantes Líquidos Prácticas Óptimas de Manejo



Lea las instrucciones de la etiqueta y considere la solubilidad de los nutrientes del fertilizante



La solulbilidad del fertilizante disminuye cuando el agua esta fría



Revise la solubilidad del fertilizante en una muestra de agua. Consulte con su Asesor Agrícola o vendedor del producto, ya que tanto la temperatura del agua, la conductividad eléctrica y el pH afectan la solubilidad del fertilizante



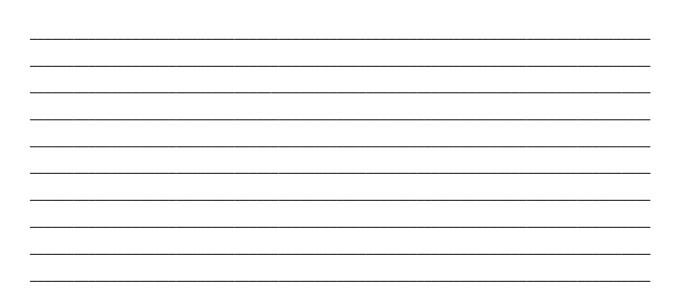
Prácticas de Riego. Riego por goteo es el óptimo en contenedores ya que todo el fertilizante queda en contacto con las raíces. Riego por aspersión sólo si tiene un sistema de captura y reciclaje de agua

| ı.                             | Tipo                               | os de Fertilizantes<br>Fuentes y Formulaciones |
|--------------------------------|------------------------------------|------------------------------------------------|
|                                | В.                                 | Fertilizantes Solubles                         |
|                                | C.                                 | Fertilizantes Granulares                       |
|                                | D.                                 | Fertilizantes Orgánicos                        |
|                                |                                    |                                                |
| Total<br>18<br>Availa<br>Solut | Nitro<br>1.97%<br>3.03%<br>able lo | reed analysis F1074 bgen (N)                   |

| <br> |      |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      | <br> |  |

### **Fertilizantes Granulares**

- 1. Granulares no encapsulados
- 2. Encapsulados (Fertilizantes de liberación controlada)
- 3. Orgánicos por ejemplo, ureas, estiércol

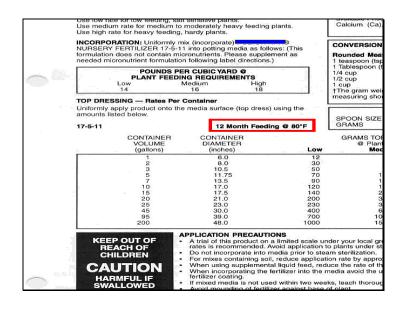

#### **Fertilizantes Granulares**

La liberación de nutrientes/solubilidad está basada en diferentes factores del FERTILIZANTE:

- 1. Solubilidad del compuesto del fertilizante
- 2. Tamaño del gránulo
- 3. Características de liberación del polímero de cobertura



¡Lea la Etiqueta! En los fertilizantes granulares encapsulados, usualmente todo o parte del nitrógeno está encapsulado. Los otros nutrientes pueden o no estar encapsulados.




# Fertilizantes Granulares La liberación de nutrientes/solubilidad está basada en diferentes factores del AMBIENTE: 1. Temperatura -----> 2. Humedad 3. Otras 'sales' en el agua Lea la Etiqueta! En los fertilizantes granulares encapsulados, usualmente todo o parte del nitrógeno está encapsulado. Los otros nutrientes pueden o no estar encapsulados.

|      | <br> |  |
|------|------|--|
|      |      |  |
|      | <br> |  |
|      |      |  |
|      | <br> |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |



| <br> | <br> | <br> | <br> |
|------|------|------|------|
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |



|      | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |





|  | <br> |  |
|--|------|--|
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |





| <br> |      |  |
|------|------|--|
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |



|      |      | <br> |      |  |
|------|------|------|------|--|
|      |      |      |      |  |
| <br> | <br> | <br> | <br> |  |
|      |      |      |      |  |
| <br> | <br> | <br> | <br> |  |
|      |      |      |      |  |
| <br> | <br> | <br> | <br> |  |
|      |      |      |      |  |
| <br> | <br> | <br> | <br> |  |
|      |      |      |      |  |
|      |      |      |      |  |
|      |      |      |      |  |
|      |      |      |      |  |
| <br> | <br> | <br> | <br> |  |
|      |      |      |      |  |
| <br> | <br> | <br> | <br> |  |
|      |      |      |      |  |
|      |      |      |      |  |



| Tipo                           | os de Fertilizantes                                                                                    |
|--------------------------------|--------------------------------------------------------------------------------------------------------|
| A.                             | Fuentes y Formulaciones                                                                                |
| В.                             | Fertilizantes Solubles                                                                                 |
| C.                             | Fertilizantes Granulares                                                                               |
| D.                             | Fertilizantes Orgánicos                                                                                |
|                                |                                                                                                        |
| Nitro<br>.97%<br>.03%<br>ble F | reed analysis F1074 figen (N)20% % Nitrate Nitrogen % Urea Nitrogen Phosphate (P205)20% otash (K20)20% |
|                                | A. B. C. D.                                                                                            |

### Fertilizantes Granulares \*Orgánicos

\*Compuestos basados en Carbón. Ejemplo: urea, urea cubierta con azufre (SCU), isobutyldieno-diurea (IBDU), harina de hueso, harina de sangre, guano.

- Tasa de liberación basada en:
  1. actividad microbiana
  2. temperatura
  3. características del medio de crecimiento

Orgánico ≠ Lenta liberación. La liberación de nutrientes puede ser lenta en algunos productos y rápida en otros. Rápido = nitrógeno en estiércoles Lento = P en harina de huesos







| <br> | <br> |
|------|------|
| <br> |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |

# Revisión Rápida Granular encapsulado (Fertilizante de Liberación Controlada) Liberación/Solubilidad basada en: > polímero de la cubierta > tamaño del gránulo > solubilidad del compuesto Fertilizantes Granulares no Encapsulados Liberación/disponibilidad basada en: > tamaño del gránulo > solubilidad del compuesto Fertilizantes orgánicos Liberación basada en: > actividad microbiana > temperatura > características del medio Considere el riesgo de lixiviación a altas temperaturas, ya que la sulubilidad y tasas de liberación de los fertilizantes granulares aumenta al aumentar la temperatura.

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

# Fertilizantes Granulares BMPs

- 1. Conozca el ciclo de crecimiento de sus cultivos
- 2. Lea etiquetas e instrucciones. Haga copias para sus archivos
- 3. Transplante antes de los meses calientes de verano
- 4. No almacene material de enraizamiento sin usar
- 5. Colecte información nueva (EC, pH) cuando el producto (plantas o proveedores) cambia
- 6. No asuma que todas las variedades o cultivares se comportan de la misma manera.



| II.                                                                                         |                                                                         | nitoreo del Estado de Fertilidad<br>Cultivos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                             | Α.                                                                      | Agua de Riego                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                             | В.                                                                      | Medios/Sustratos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                             | C.                                                                      | Tejidos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                             |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                             |                                                                         | UC DAVIS ANALYTICAL LABORATORY UNIVERSITY OF CALIFORNIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                             | Nursery Crops (Clirus)                                                  | UNIVERSITY OF CALIFORNIA  WORK RECJ # # COF BANNEL BID D 080021 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| COMMODITY  Sample Type: WATER  SAMPLE # ORSE  1 dup 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | pH E0<br>(180F 80483) L80F 8<br>084<br>6.24 0.5<br>0.25 0.5<br>0.26 0.5 | UNIVERSITY OF CALIFORNIA   WORK REC # COMMAND   W |

|  | <br> |
|--|------|
|  |      |
|  |      |
|  |      |
|  |      |
|  |      |
|  |      |
|  |      |
|  |      |
|  |      |
|  |      |

## **Agua - Medio - Tejido Laboratorios Externos**

- \*Los laboratorios pueden dar recomendaciones basadas en reportes y retroalimentación sobre las operaciones.
- \*Si su fuente de agua, sustrato, tipo de fertilizante, prácticas culturales, personal o equipo cambian, existe la posibilidad de cambio en el estado de fertilidad.
- \*Elija un laboratorio y quédese con el ya que los métodos analíticos varían de laboratorio a laboratorio, lo cual cambia los resultados.

¿Por qué?

| <br> |  | <br> |  |
|------|--|------|--|
|      |  |      |  |
|      |  |      |  |
|      |  |      |  |
|      |  |      |  |
|      |  |      |  |
|      |  |      |  |
|      |  |      |  |
|      |  |      |  |
|      |  |      |  |
|      |  |      |  |
|      |  |      |  |

#### **Medios / Sustratos**

Métodos de Extracción

- \*El tipo de extracción se basa en el tipo de suelo o sustrato, en qué tipo de parámetros químicos se van a determinar, y el método de análisis a utilizar.
  - 1. Agua
  - 2. Solución de Cloruro de Calcio
  - 3. Soluciones Ácidas
  - 4. Soluciones Alcalinas (pH Alto)
- \*Para suelos, los laboratorios determinarán y usarán métodos recomendados.

#### **Medios / Sustratos**

**Métodos Analíticos** 

- 1. Emisión de Flama
- 2. Colorimétrico desarrollo de color
- 3. Espectrofotómetro de Masa Peso Molecular
- \* No compare reportes de diferentes laboratorios
- \* Enviar duplicados "blancos" para comprobar la validez del laboratorio



| <br> |  | <br> |  |
|------|--|------|--|
|      |  |      |  |
|      |  |      |  |
|      |  |      |  |
|      |  |      |  |
|      |  |      |  |
|      |  |      |  |
|      |  |      |  |
|      |  |      |  |
|      |  |      |  |
|      |  |      |  |

| II.               |                   | nitoreo del Estado de Fertilidad<br>Cultivos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 |
|-------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                   | Α.                | Agua de Riego                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|                   | В.                | Medios/Sustratos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|                   | C.                | Ambiente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                   | w <sub>e</sub>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| Control Variables | Manhany : pota vi | CONTROL OF STREET STREE |   |

|  | <br> |  |
|--|------|--|
|  |      |  |

#### Agua de Riego

- 1. Alcalinidad
- 2. Conductividad Eléctrica (EC)
- 3. Nutrientes Esenciales
- 4. Nutrientes No-Esenciales
- 5. Patógenos

#### **Agua de Riego**

¿Qué análisis enviar a laboratorios externos?

- 1. Nutrientes Esenciales
- 2. Alcalinidad cuánto ácido agregar
- 3. Conductividad Eléctrica (EC)
- 3. Nutrientes No-Esenciales Sodio
- **4.** Fitopatógenos Phytophthora, Pythium, virus



|                                                                                            |                                 |                                              |                                       |                                      |                                               | S ANAL                                      |                                                   | LABOR                                            | ATORY                                         |                                          |                                          |                                                      | Page 1 of 1          |
|--------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------|---------------------------------------|--------------------------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------------|--------------------------------------------------|-----------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------------------|----------------------|
| сомморіт                                                                                   |                                 |                                              | a (Citrus) Well I                     | Fieler                               |                                               | mp                                          | Osnisb ucdavi                                     | s edu                                            | THE                                           | RN AROUND                                | # OF S                                   | REG#:<br>AMPLES:<br>RECEIVED:<br>REPORTED:<br>FID #: | 090275<br>9/24/12/15 |
| Sample Type                                                                                |                                 | pH<br>(100*100.00)                           | EC (507 519.53)                       | SAR<br>(900 640.02)                  | Ce (Soluble)<br>(SOP 631.03)                  | Mg (Soluble)<br>(SOP 835.83)                | Na (Soluble)<br>(SOF 635.93)                      | (300 ENIST)                                      | B (Soluble)<br>(905 823.92)                   | HC03                                     | C03                                      |                                                      |                      |
| 1 dup<br>2<br>3<br>3 Joup                                                                  | peac                            | 8.24<br>8.24<br>8.25<br>8.26<br>8.28<br>8.29 | 0.54<br>0.54<br>0.54<br>0.54<br>0.54  | 30<br>30<br>30<br>02<br>02           | 0.83<br>0.82<br>0.82<br>-0.01<br>0.01         | 1.71<br>1.69<br>1.71<br>-0.01<br>-0.01      | 3.35<br>3.34<br>3.37<br>0.02<br>0.02              | 0.67<br>0.65<br>0.67<br>0.66<br>0.68             | 0.60<br>0.59<br>0.60<br>0.04<br>0.04          | 3.9<br>3.9<br>3.9<br>3.9<br>2.2<br>2.2   | 0.2<br>0.2<br>0.2<br>0.2<br><0.1<br>+0.1 |                                                      | П                    |
| Method Detection<br>Stank Concerns<br>Standard Ref as<br>Standard Ref As<br>Standard Refer | ellon:<br>Teslad:<br>constable: | 0.01<br>6.64<br>6.656.06<br>UCD 004          | 0.01<br>0.29<br>0.29±0.02<br>UCD 006B | 0.1<br>2.9<br>2.8±0.2<br>UCD 006B    | 0.01<br>0.00<br>0.41<br>0.4040.04<br>UCD 006B | 0.01<br>0.00<br>0.59<br>0.59006<br>UCD 0068 | 0.01<br>0.00<br>2.04<br>2.00±0.10<br>UCD 006B     | 0.10<br>0.33<br>0.32±0.03<br>UCD 006B            | 0.01<br>0.00<br>0.39<br>0.40±0.00<br>UCD 006B | 0.1<br>0.0<br>2.1<br>2.0±0.2<br>UCD 006B | 0.1                                      |                                                      | 1 1                  |
|                                                                                            |                                 | The SC<br>NOTE: No res                       | iP heading in th                      | iis Excel file is<br>eport is accura | te to more than                               | ethod summar<br>3 significant fi            | y on the Labors<br>gures. More fig<br>by Francisi | nory method us<br>dary website<br>sures may be p | http://enlab.uc                               |                                          | ig rules.                                |                                                      |                      |
|                                                                                            |                                 | Reviewed ar                                  | rd Approved:                          |                                      | electronically<br>Del                         | signed by Dir<br>Holstege, Din              |                                                   |                                                  |                                               |                                          |                                          |                                                      |                      |

| <br> |      |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |

|                 | C                  | alı              | da | 3 (   | d     | del                      | Ag                                                                 | gua                                                                                |                            |
|-----------------|--------------------|------------------|----|-------|-------|--------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------|
| W               | аурс               | oint<br>ALYTICAL | W  |       |       | Main 714-28              | 41 East Hunter A<br>Anaheim<br>12-8777 ° Fax 71<br>www.waypointana | , CA 92807<br>4-282-8575<br>lytical.com                                            | ATION WATER                |
| Send to :       |                    |                  |    | Proje | oct : |                          |                                                                    | Report No :<br>Cust No :<br>Date Printed<br>Date Receive<br>Page :<br>Lab Number : | 15-<br>03024<br>10/09/2015 |
| Sample Id : F   | Raw Well \         | Water            |    |       |       |                          |                                                                    |                                                                                    |                            |
|                 |                    | mg/L             |    |       |       | ANIONS                   |                                                                    |                                                                                    |                            |
| Sodium          | Na                 | 158              |    | 6.1   | 87    | Chloride                 | CI                                                                 | 300                                                                                | 8.45                       |
| Calcium         | Ca                 | 92               |    | 4.5   |       | Sulfate                  | 804                                                                | 132                                                                                | 2.75                       |
| Magnesium       | Mg                 | 38               |    | 3.1   |       |                          | 8                                                                  | 44                                                                                 |                            |
| Potassium       | K<br>NH.           | 1 0              | _  | 0.0   |       | Bicarbonate<br>Carbonate | HCO <sub>3</sub>                                                   | 288                                                                                | 4.72<br>0.00               |
| Ammonium        | NH <sub>4</sub> -N | 0                | -  | 0.0   | 00    |                          | NO.                                                                | 4                                                                                  | 0.00                       |
|                 | 10.4               |                  |    |       |       | Nitrate                  | NO <sub>3</sub> -N                                                 | 1                                                                                  |                            |
|                 |                    |                  |    |       |       | Phosphate                | PO <sub>4</sub>                                                    | 6                                                                                  | 0.19                       |
|                 |                    |                  |    |       |       | Phosphate                | Р                                                                  | 2                                                                                  |                            |
| SUM OF CATIO    | INS                |                  |    | 14.   | .62   | SUM OF ANION             | is                                                                 |                                                                                    | 16.17                      |
|                 |                    |                  |    |       |       |                          |                                                                    |                                                                                    |                            |
| Hydrogen Ion A  | ctivity            | рН               |    | 7.5   |       | Copper                   | Cu                                                                 |                                                                                    | 0.01 mg/L                  |
| Equilibrium Rea | action             | pHc              |    | 8.50  |       | Zinc                     | Zn                                                                 |                                                                                    | 0.20 mg/L                  |
| Electrical Cond | uctivity           | ECw              | ,  | 1.56  | dS/m  | Manganese                | Mn                                                                 |                                                                                    | 0.12 mg/L                  |
| Total Dissolved | Solids             | TDS              |    | 998   | mg/L  | Iron                     | Fe                                                                 |                                                                                    | 0.01 mg/L                  |
| Adj Na Adsorpt  | ion Ratio          | SARadj           | -  | 4.21  |       | Boron                    | В                                                                  |                                                                                    | 0.16 mg/L                  |
| Sodium Adsorp   | tion Ratio         | SAR              |    | 3.50  |       | Fluoride                 | F                                                                  |                                                                                    | 0.37 mg/L                  |
| Hardness        |                    |                  |    | 387   | ppm   | Aluminum                 | AI                                                                 |                                                                                    | 0.01 mg/L                  |
|                 |                    |                  |    |       |       | Molybdenum               | Mo                                                                 | -                                                                                  | 0.07 mg/L                  |

| <br> |  | <br> |
|------|--|------|
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |

#### Agua de Riego Colección de Muestras

- 1. Pregunte en el laboratorio por instrucciones especiales
- 2. Volumen (cantidad) depende de cuántos análisis
- 3. Sincronización envío nocturno
- 4. Recipiente botella plástica limpia (puede ser provista por el lab)

#### Agua de Riego

¿Qué análisis podemos hacer en el vivero?

- 1. pH
- 2. Conductividad Eléctrica
- 3. Algunos Nutrientes

**Nitratos** 

Sodio

**Potasio** 

Calcio

4. Algunos Fitopatógenos –

Phytophthora, Pythium, virus



| II.                 |                      | nitoreo del Estado de Fert<br>Cultivos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ilidad                      |  |  |  |  |  |  |  |
|---------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|--|--|
|                     | Α.                   | Agua de Riego                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |  |  |  |  |  |  |  |
|                     | В.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |  |  |  |  |  |  |  |
|                     | ٥.                   | inicalos, sustratos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |  |  |  |  |  |  |  |
|                     | C.                   | Tejidos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |  |  |  |  |  |  |  |
|                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |  |  |  |  |  |  |  |
|                     | ~~                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |  |  |  |  |  |  |  |
| THE PERSON NAMED OF |                      | Constant Con | Program Contact Schoolstern |  |  |  |  |  |  |  |
| Greens Yes          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |  |  |  |  |  |  |  |
| Greens Yes          | ent   ought   rester |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No. 1 automous              |  |  |  |  |  |  |  |

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

#### **Medios / Sustratos**

¿Qué análisis para laboratorios externos?

- 1. Nutrientes Escenciales
- 2. pH
- 3. Conductividad Eléctrica (EC)
- 4. Nutrientes No-Esenciales sodio, aluminio
- 5. Fitopatógenos Phytophthora, Pythium, virus.

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      | <br> |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

|                             |           |            |           | dic              |             |                      |                                                                                                                   |                      |
|-----------------------------|-----------|------------|-----------|------------------|-------------|----------------------|-------------------------------------------------------------------------------------------------------------------|----------------------|
| xtract                      |           |            | at        | ur               | ad          | 0                    | s (S                                                                                                              | SME                  |
| Waypo<br>ANA                | int.      | <b>N</b> ) | MEDIA A   | Main<br>ANALYSIS | 714-282-877 | Anaheim<br>7° Fax 71 | Ave. Suite A<br>b, CA 92807<br>4-282-8575<br>dytical.com<br>Report No:<br>Cust No:<br>Date Printed<br>Date Sample |                      |
| Lab Number: 84637           | Sample Id | Block      | 3 Cielo 1 | r-2              |             |                      | Date Recd:<br>PO:<br>Page :                                                                                       | 05/19/2016<br>1 of 4 |
| Test                        | Results   |            | al Range  |                  |             |                      | T RATINGS                                                                                                         |                      |
| rest                        | 4.5       | Low<br>5.2 | High      | Low              | Acceptable  | Opt                  | imum H                                                                                                            | igh Very High        |
| Soluble Salts, dS/m (mS/cm) | 3.74      | 0.75       | 3         |                  |             |                      | 100                                                                                                               |                      |
| Nitrogen, ppm               | 25        | 40         | 200       |                  | 1           |                      |                                                                                                                   |                      |
| Ammontacal Nitrogen, ppm    | 1.21      | 0          | 30        |                  | 1           |                      |                                                                                                                   |                      |
| Nitrate Nitrogen, ppm       | 23.7      | 40         | 200       | 1                |             |                      |                                                                                                                   |                      |
| Phosphorus, ppm             | 25.7      | 5          | 30        |                  |             |                      |                                                                                                                   |                      |
| Potassium, ppm              | 237.0     | 60         | 250       |                  |             |                      |                                                                                                                   | - 11                 |
| Catcium, ppm                | 366       | 25         | 150       |                  |             |                      |                                                                                                                   | -                    |
| Magnesium, ppm              | 100       | 15         | 75        |                  | 100         | 101                  | 100                                                                                                               |                      |
| Iron, ppm                   | 0.1       | 0.3        | 3         | _                | I           |                      |                                                                                                                   |                      |
| Manganese, ppm<br>Zinc, ppm | 0.42      | 0.15       | 0.4       |                  | -           | - 147                |                                                                                                                   |                      |
| Copper, ppm                 | 0.42      | 0.01       | 0.4       |                  |             |                      |                                                                                                                   |                      |
| Boron, ppm                  | 2.16      | 0.05       | 0.5       |                  | -           | _                    |                                                                                                                   |                      |
| Sulfur, ppm                 | 0         | 20         | 100       |                  | 1           |                      |                                                                                                                   |                      |
| Sodium, ppm                 | 332       | 0          | 80        |                  |             | _                    |                                                                                                                   | _                    |
| Aluminum, ppm               | 0         | 1          | 4         |                  |             |                      |                                                                                                                   |                      |
| Molybdenum, ppm             | 0.10      | 0.01       | 0.1       | rit.             |             |                      | -                                                                                                                 |                      |
| Chloride, ppm               | 192.00    | 0          | 80        |                  |             | - 30                 | 450                                                                                                               |                      |
| Parameter Control           |           |            |           |                  |             |                      |                                                                                                                   |                      |
| Š.                          |           |            |           |                  |             |                      |                                                                                                                   |                      |

|  | <br> |  |
|--|------|--|
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |

|                                                                                                                                                                                                                                                                                            | Medios<br>Cómpost                       |                                                 |                                                      |                                           |                                                  |                                                      |                                                  |                                                      |                                                        |                                                       |                                                        |                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------|------------------------------------------------------|-------------------------------------------|--------------------------------------------------|------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|
| UC DAVIS ANALYTICAL LABORATORY UNIVERSITY OF CALIFORNIA  SUBMITTED BY: AFFILIATION COPY TO: COMMODITY: COMPOSI  UNIVERSITY OF CALIFORNIA  MORK RED # # of SAMP-LES OATE RECEIVED OATE RECEIVED OATE RECEIVED CLUSH'S D. TURN AROUND THE REW REPROM DAYS:  TURN AROUND THE REW REPROM DAYS: |                                         |                                                 |                                                      |                                           |                                                  |                                                      |                                                  |                                                      |                                                        |                                                       |                                                        |                                                           |
| Sample Type: MISC  SAMPLE# DESC  1 dup 2                                                                                                                                                                                                                                                   | DM<br>[SOP 505.03]<br>%<br>96.4<br>97.9 | Pertial DM<br>(509 507.01)<br>%<br>70.7<br>82.1 | pH (H2O 1:5)<br>(80P.795.81)<br>8:59<br>8:58<br>8:78 | (SOP 715.01)<br>dShn<br>3.1<br>3.1<br>2.4 | Ash<br>(S0P 670.02)<br>%<br>54.5<br>54.0<br>66.7 | NH4-N<br>(80P 519.02)<br>ppm<br>20<br>20<br>20<br>10 | NO3-N<br>(80P 519.02)<br>ppm<br><10<br><10<br>60 | OM (LOI)<br>[SOP415.03]<br>%<br>38.7<br>37.6<br>27.9 | C-Orp-LOI<br>(509-495.63)<br>%<br>22.4<br>21.8<br>16.2 | C (Total)<br>(509 52201)<br>%<br>23.5<br>22.9<br>15.4 | N (Total)<br>(SOP 522.01)<br>%<br>1.57<br>1.58<br>0.98 | P (Total)<br>(SOP 590.03)<br>%<br>0.401<br>0.399<br>0.499 |
| 2 dup Method Delection Limit: Blank Concertration: Standard Ref ex Tested: Standard Ref ex Cospitable: Standard Reference:                                                                                                                                                                 | 2-day                                   |                                                 |                                                      |                                           |                                                  |                                                      |                                                  |                                                      |                                                        |                                                       |                                                        |                                                           |
| Please arrange<br>Samples will be                                                                                                                                                                                                                                                          |                                         |                                                 |                                                      | this Wor                                  | k Reques                                         | t (16M066                                            | 6) when s                                        | atisfied w                                           | ith the re                                             | sults, bu                                             | t before 8                                             | /13/16 .                                                  |

#### Medios

¿Qué análisis podemos hacer en el vivero?

- 1. Conductividad Eléctrica (EC)
- 2. pH
- 3. Nitratos (NO<sub>3</sub>-)
- 4. Capacidad de Retención de Agua
- 5. Fitopatógenos Phytophthora, Pythium, virus

#### **Medios**

Demostración del Método "Vertido a Través"

- 1. Asegúrese que el contenedor esté nivelado
- 2. Vierta agua en el contenedor
- 3. Permita que drene por ~1 hora
- 4. Coloque un anillo inerte para elevar el contenedor por arriba del nivel de lixiviación o drenaje
- 5. Riegue para obtener 25% lixiviados o percolación se necesitan ~ 50 ml
- 6. Mida EC, pH, etc.
- 7. Mantenga hoja de registros
- 8. Sea consistente con el método que estableció

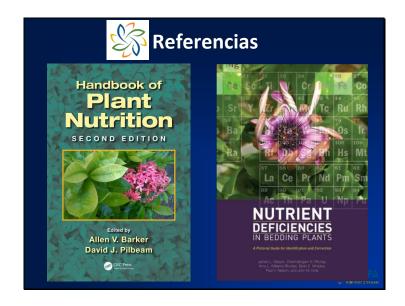
| <br> |  |  |
|------|--|--|
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |

| IV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | nitoreo del Estado de Fertilidad<br>Cultivos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α. | Agua de Riego                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В. | Medios/Sustratos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C. | Tejidos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| district Federate Programme Control of Programme Control of Contro |    | PLANT MANAGEMENT STORY OF THE S |

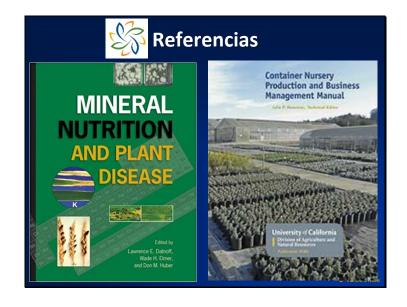
|  | <br> |  |
|--|------|--|
|  |      |  |

#### **Tejidos**

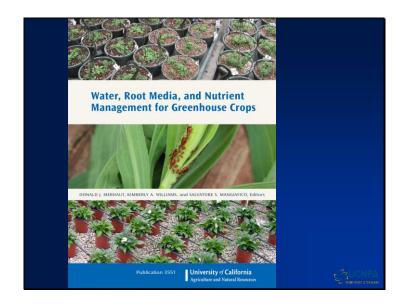
La colección y preparación de la muestra de tejidos influenciará enormemente los resultados del análisis.


- 1. Siga instrucciones provistas por el laboratorio
- 2. Tome cuando menos 2 muestras: tejido sintomático y asintomático
- 3. Misma especie y misma variedad o cultivar
- 4. Mantenga su Hoja de Registros →
- 5. Colecte durante el mismo estado de desarrollo de planta
- 6. Colecte de las mismas condiciones de cultivo invernadero, campo
- 7. Enjuague hojas de suciedad o polvo con agua limpia
- 8. Colecte hojas maduras o inmaduras, dependiendo de la deficiencia nutricional




|  | <br> |  |  |
|--|------|--|--|
|  |      |  |  |
|  |      |  |  |
|  |      |  |  |
|  |      |  |  |
|  |      |  |  |
|  |      |  |  |
|  |      |  |  |
|  |      |  |  |
|  |      |  |  |
|  | -    |  |  |
|  |      |  |  |

|                                                                |          |                          | en                            | Te                | >iic                            | do              | 5 1               | Je:               | ge'                 | tal             | es                    |                                                   |                      |
|----------------------------------------------------------------|----------|--------------------------|-------------------------------|-------------------|---------------------------------|-----------------|-------------------|-------------------|---------------------|-----------------|-----------------------|---------------------------------------------------|----------------------|
|                                                                |          |                          | <u> </u>                      | '                 | ٠,١,٠                           | 5. O            |                   |                   | 9                   |                 |                       |                                                   |                      |
|                                                                |          |                          |                               | 1                 | UC DAVI                         | S ANAL          |                   |                   | ATORY               |                 |                       |                                                   | Page 1 of 1          |
| SUBMITTED<br>AFFILIATION<br>COPY TO:<br>COMMODITY<br>DRY MATTE |          |                          | neyard Leaver<br>ed on 100% D |                   | Matter = 90.0%                  | Mp              | Alemielo uodevir  | s edu             | 71                  | RN AROUND       | DATE<br>DATE<br>CLIEN | REQ#<br>AMPLES<br>RECEIVED:<br>REPORTED:<br>TID # | 08/08/15<br>08/13/15 |
| Sample Type                                                    |          | N (Total)<br>1509 522811 | P (Total)<br>(50F 590.03)     | K (Total)         | S (Total)<br>(50,000,021        | B (Total)       | Ca (Total)        | Mg (Total)        | Zn (Total)          | Mn (Total)      | Fe (Total)            | Cu (Total)                                        | mi.                  |
| SAMPLE#                                                        | DESC     | 2.40<br>2.31             | 0.151<br>0.151                | 0.77<br>0.78      | 2050<br>2050                    | 39:6<br>40:2    | 2.05<br>2.08      | 0.689             | 998<br>34.5<br>35.0 | 60.2<br>60.8    | 169<br>170            | 4.3<br>4.2                                        | $\vdash$             |
| 2                                                              |          | 2.62                     | 0.150                         | 0.76              | 2040                            | 31.7            | 2.09              | 0.782             | 22.1                | 55.0            | 152                   | 4.3                                               | 1 1                  |
| 3 4                                                            |          | 2.39                     | 0.156                         | 1.00              | 2050<br>2100                    | 27.9<br>25.5    | 213               | 0.579             | 35.6                | 53.8            | 113                   | 4.3                                               | l I                  |
| - 6                                                            |          | 2.42                     | 0.152                         | 1.31              | 2030                            | 30.0            | 2.08              | 0.561             | 40.6                | 56.8            | 168                   | 3.6                                               | l I                  |
| 6 7                                                            |          | 2.37                     | 0.144<br>0.146                | 1.21<br>0.75      | 1990                            | 29.0            | 2.00              | 0.595             | 41.6<br>33.5        | 50.4            | 164                   | 3.5                                               | l I                  |
| 8                                                              |          | 2.26                     | 0.146                         | 0.75              | 1890                            | 39.9            | 1.99              | 0.785             | 27.1                | 52.3            | 124                   | 3.5                                               | l I                  |
| 9                                                              |          | 2.35                     | 0.147                         | 0.73              | 1900                            | 41.4<br>37.9    | 1.97              | 0.677             | 28.2                | 55.8<br>52.8    | 107                   | 3.6                                               | l I                  |
| 10<br>10 dup                                                   |          | 2.35                     | 0.152                         | 0.77              | 1850                            | 36.7            | 211               | 0.726             | 32.7<br>32.5        | 52.8            | 129                   | 3.4                                               | l I                  |
| 11                                                             |          | 2.42                     | 0.150                         | 0.72              | 1840                            | 44.0            | 1.95              | 0.675             | 25.2                | 50.3            | 107                   | 3.7                                               | l I                  |
| 12<br>12 due                                                   |          | 2.36<br>2.45             | 0.166                         | 0.54              | 1890                            | 46.4            | 2.08              | 0.807             | 27.1                | 48.3<br>48.0    | 111                   | 4.1                                               | l I                  |
| Interpreter                                                    | of least | 1 0.02                   | 0.010                         | 0.01              | 10                              | 1 10            | 0.010             | 0.010             | 10                  | 1 10            | 10                    | 0.5                                               | 1 1                  |
| Stank Concentral                                               | Sor:     | 0.00                     | 0.000                         | 0.00              | 0                               | 0.0             | 0.000             | 0.000             | 0.0                 | 0.0             | 0.0                   | 0.0                                               | 1 1                  |
| Standard Ref at<br>Standard Ref Ap                             |          | 3.04                     | 0.41<br>0.42±0.04             | 2.57<br>2.4140.15 | 3025<br>3100x300                | 46<br>45s4      | 1.59<br>1.60±0.15 | 0.38<br>0.36±0.06 | 29<br>30a4          | 50<br>5945      | 1093<br>1090a150      | 7.1                                               | I I                  |
| Chardons Reform                                                |          | WAY, 182                 | UCD 187                       | UCD 187           | UCD 187                         | UCD 187         | UCD 187           | UCD 187           | UCD 187             | UCD 187         | UCD 187               | UCD 187                                           | 1 1                  |
|                                                                |          |                          |                               |                   | ocedure numbe<br>inked to the m |                 |                   |                   |                     | davis edu       |                       |                                                   |                      |
|                                                                |          | NOTE: Nores              | uit within this r             | eport is accura   | te to more than                 | 3 significent f | gures. More fig   | ures may be pe    | esent due to si     | oftware roundin | ig rules.             |                                                   |                      |
|                                                                |          | Checked and              | E Approved:                   |                   | electronically s                | signed by Trac  |                   |                   |                     |                 |                       |                                                   |                      |


| <br> | <br> | <br> | <br> |
|------|------|------|------|
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
| <br> |      | <br> | <br> |
|      |      | <br> |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
| <br> | <br> | <br> | <br> |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
| <br> | <br> | <br> | <br> |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
| <br> | <br> | <br> | <br> |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      | <br> | <br> | <br> |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
| <br> | <br> | <br> | <br> |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
| <br> | <br> | <br> | <br> |
|      | <br> | <br> |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |
|      |      |      |      |



| <br> | <br> |  |
|------|------|--|
| <br> | <br> |  |
|      |      |  |
| <br> | <br> |  |
| <br> | <br> |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |



| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |



